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Inelastic Scattering of Electrons by the Hydrogen Molecule Ion* 
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The inelastic scattering of electrons by H2+ is investigated by means of the first Born approximation. 
Using the exact electronic wave functions, the integral that must be evaluated to find the differential cross 
section for fixed internuclear separation is studied for an electronic excitation from the ground state to any 
discrete excited state. Values related to this integral are tabulated for the processes ls<Ta-2p<ru, lso-g-2piru, 
lsa-g-lso-g at the equilibrium internuclear distance, while the first case is studied at two additional inter
nuclear separations. The corresponding total cross sections are calculated for incident energies up to 400 eV. 
Assuming that rotational and vibrational levels of the final electronic state cannot be resolved, it is known 
that an observed cross section necessarily depends on the initial vibrational state of the molecular ion. The 
effect of two different initial vibrational states (v = 0,3) is investigated for the \s<xg-2pcru case and it is ob
served that the vibrational state has a marked influence on the total cross section. 

INTRODUCTION 

TH E problem of inelastic electron scattering by 
molecules has a complication in addition to those 

found when considering scattering by atomic systems 
in that the internal degrees of freedom of the molecule 
must be taken into consideration. However, in the 
range of incident energies where the first Born approxi
mation can be expected to be valid, experimentally 
determined cross sections which resolve rotational 
effects on electronic transitions have yet to be published, 
and it appears that the resolution of vibrational struc
ture is just now becoming an experimental possibility. 
This being the case, it seems highly plausible to treat 
the internal degrees of freedom so that specific vibra
tional and rotational excitations are ignored while 
considering a given electronic process. A detailed 
analysis of the first Born approximation to scattering 
by molecules, where the above treatment of the internal 
modes was employed, has been given by Lassettre1 

and by Craggs and Massey.2 Following their treatment, 
the differential cross section, where the excitation is 
n—^n' for the electronic system, L^M—^L'^M' for 
rotation and v—>v' for vibration, can be written 
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* This work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 E. N. Lassettre, Ohio State University Research Foundation, 
Columbus, Ohio, 1957, R. F. Project 464, Report No. 1 (un
published) . 

2 J. D. Craggs and H. S. W. Massey, in Handbuch der Physik, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. 37, Part 
1, p. 332. 

©, X are rotation and vibration functions, respectively, 
where it has been assumed that these functions do not 
mutually interact in addition to the usual assumption 
that the nuclear and electronic coordinates are sepa
rable. This expression and all remaining equations are 
given in atomic units unless stated otherwise. The 
quantity e is defined for a molecule with j electrons as 
(neglecting spin variables) 

- / 
e(K,S,Z,R)= hfn.*(tvrj;R) X) exp(iK-r, ">] 

X ^ n ( r i - - - r i ; ^ ) r f r r - ^ r i , (2) 

where the states n,n' cannot be the same. The quantities 
K, 8, £, R refer to the parameters that must be fixed 
during the integration over the electronic coordinates. 
The symbol K, the magnitude of K, defines the mo
mentum change of an incident electron scattered 
through an angle 6; K2=kn

2+kn'
2—2knkn> cos0, where 

kn, hn' are the magnitudes of the momentum for the 
incident electron before and after scattering. The 
angles 5, £ fix the orientation of the molecule in space 
and R is the internuclear distance. Lassettre1 has shown 
that the differential cross section becomes 

I{nv,riv'; 6) = (4kn,/knK*) (l/4ar) 
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when one sums over all final rotational states and 
averages over the degenerate levels of the initial state. 
Equation (3) will be true if the rotation of the molecule 
can be described by a symmetrical top and if the 
dependence of kn', K on UM' is ignored.1 I t has been 
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assumed that the final vibrational levels cannot be 
resolved, so a sum over all v' can be made, which gives 

I{nv,ri; 6) = (4kn./knK*) I (l/4ir) 

/•OO /»27T /»7T 
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7o •/ 0 ^ 0 

XrfSr f^ | (4) 

if the dependence of kn', K on v1 is neglected. This is 
then the first Born approximation for a given electronic 
excitation of a molecule when the final rotational and 
vibrational states of the system are unresolved. 

The simplest molecular system available for study 
is the hydrogen molecule ion. Previous calculations on 
electron scattering by this system have been reported 
by Ivash3 and Kerner.4 Ivash treats the electronic 
excitation lsag-2pau (in the notation of Bates, Ledsham 
and Stewart5), where he approximates to the ground 
vibrational state by fixing R=Re, the equilibrium 
internuclear distance, and then evaluates Eq. (4) by 
ignoring the integration over R. In evaluating Eq. (2), 
he also treats the possibility of electron exchange. 
Kerner does not use Eq. (4), but evaluates Eq. (1) by 
considering an excitation to a specific rotational and 
vibrational state while treating the lsag-2pau electronic 
transition. In each of these studies, the electronic wave 
functions that appear in Eq. (2) were replaced by linear 
combinations of Is atomic orbitals. Since the exact 
wave functions for H 2

+ (assuming fixed nuclei) are 
available5 and the use of exact wave functions for the 
scatterer is assumed in the derivation of the first Born 
approximation, it would seem that electron scattering 
by H 2

+ should be reexamined using these wave func
tions. This will make it possible to give a quantitative 
estimate of the error introduced into the first Born 
approximation when approximate electronic wave 
functions are used to evaluate Eq. (2), at least for this 
relatively simple case. In addition, there are a number 
of electronic processes which can be expected to con
tribute to the inelastic scattering by H 2

+ and it would 
be interesting to obtain quantitative information about 
some of these electronic transitions. 

The integral defined in Eq. (2) is studied for tran
sitions from the ground state to any discrete excited 
electronic state. I t is found that this integral can be 
evaluated analytically with respect to all coordinates 
except one. The behavior of this integral as a function 
of K and the orientation parameters is explored and a 
quantitative example is given for one transition. A 

3 E. V. Ivash, Phys. Rev. 112, 155 (1958). 
4 E. H. Kerner, Phys. Rev. 92, 1441 (1953). 
5 D. R. Bates, Kathleen Ledsham, and A, L. Stewart, Phil. 

Trans. Roy, Soc. London A246, 215 (1953), 

table of this integral, after the appropriate integration 
over nuclear orientation has been performed, is given 
for the transitions ls<xg-2p(ru, ls<rg-2pTu, \sag-2s(rg. All 
transitions are studied at the equilibrium internuclear 
distance while the lsag-2pau case is evaluated at two 
additional internuclear separations. The total cross 
section for incident energies up to 400 eV and fixed R 
is then calculated for these various cases. The effect of 
two different vibrational states for the ground state, 
v=0, 3, is also studied for the \s(rg~2p(xu transition and 
the corresponding total cross sections are given. 

GENERAL CONSIDERATIONS 

The total cross section corresponding to Eq. (4) is 

Qv= I{nv,ri; 6)dQ= (Sw/kn
2) (1/4TT) 

x / / / ~ | x ,W 
J kn-kn' J 0 J 0 J 0 I A. > 

XR2sm8d5d&RdK, (5) 

where dQ, is the solid-angle volume element. Carrying 
out the integration over the orientation angles,1 

/•27T /»7T 

\e{K,R)\t= {1/^)1 / |6(Jr,«,f,-R)|*sinMW{ (6) 
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is found. Defining 

rkn+kn' 

Q(R) = (&r/W) / [I e(K,R) I */K<]dK (7) 
J kn—kn' 

and interchanging the order of integration, the total 
cross section becomes 

/•OO 

Qv= Q(R)\Xv(R)\*R*dR. (8) 

In order to obtain Q(R) the integrations defined by 
Eqs. (2), (6), (7) must be carried out for a fixed R. 
Then Q(R) must be found as a function of R to effect 
the evaluation of Eq. (8). 

For the hydrogen molecule ion, Eq. (2) becomes 

/•OO /»27T f l 

e (Kfi,R) = / / / exp{ (iKR/2) [X/x cos5 
J i JQ y _ i 

+ [(X 2 -1) (1-M2)]1/2 sin<£ sin5]} 

X^»^»'*(U/2)»(X2-Ma)*dWX, (9) 

where the coordinate system is shown in Fig. 1. I t 
should be noted that for any linear scattering system 
£ can be suppressed. The wave functions to be used in 
evaluating Eq. (9) are given by Bates, Ledsham, and 
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where 

FIG. 1. The coordi
nate system for H2

+ 

and its orientation 
with respect to K. 
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Stewart5 and are of the form 

*»= (X+l)-(X2-l)^2e-^Eg, 
\x+i/ J x+v 

XE'/^H-^O*)]^*"1*. (io) 

The primed sum means that only even or odd values 
of i are to be used. The quantities a, p, m are eigen-
parameters for the nth. state and Pt+mm is an associated 
Legendre polynomial of the first kind. The product 
^n&n'* appearing in Eq. (9) can be written in the form 

t 

= /(A) exp(i?n<t>) £ ' btPt+mm(»), (11) 
t 

since the product of any two Legendre polynomials 
can be written as a sum of Legendre polynomials. [See 
Ref. 6 for a general formula applicable to the case 
m = 0 . ] The ground state involves only terms of the 
type P2fcj hence, the sum in Eq. (11) will have values 
of m and t+m identical to those representing the excited 
state. 

In this notation Eq. (9) becomes 

e(K,8,R) = MR/2Y L ' inUn 

X / \2f(\)jn+m(y)Pn+m
m(cOSlP)d\ i 

- £ ' inbn [ 
Jx 

fQCljn+^P^icostfdX , (12) }• 
6 E. T. Whittaker and G. N. Watson, A Course of Modem 

Analysis (Cambridge University Press, Cambridge, 1958), p. 331. 

y=(KR/2)(\i~-smi5)1/2, 

costA=X cosS/(X2-sin25)1/2, 

(13) 

(14) 

and j is a spherical Bessel function. The details of this 
derivation are sketched in the Appendix. 

NUCLEAR ORIENTATION 

The qualitative behavior of e(K,8,R) as a function 
of 5 for various final states can easily be determined 
from Eq. (9) or Eqs. (12)-(14). Expanding the expo
nential of Eq. (9) in a power series of the exponent and 
then noticing the symmetry of the integral with respect 
to fx or #, a large number of terms will be found to 
vanish. In addition, each nonvanishing term in this 
series will have a very restricted dependence on 5. 
Listing the results for the cases studied here, it is 
found all nonvanishing terms involve cos (2k+1)5 for 
final npcru states, s in(2^+l)§ for final npwu states, and 
cos2&5 for final nsaQ states, where n, k are positive 
integers. These same conclusions can be reached by 
using Eqs. (12)-(14). I t is also known that e(K,5,R) 
must be either symmetric or antisymmetric about 
5 = 0, 7r/2, 7r, since | e(K,8,R)\2 must be symmetric 
about these points. This follows immediately from the 
symmetry of H 2

+ and implies that we need e(K,5,R) 
only over the range 0<5<7r/2 . 

From the above analysis or directly from Eqs. 
(12)—(14), it can be shown that for certain transitions 
e(K,d,R) will vanish identically for a specific orien
tation. I t is apparent that e(K,5,R) is zero when 5=7r/2 
for npau final states and when 5 = 0 for npru final states. 
e(K,8,R) is never identically zero for final states of the 
type nso-g. This type of orientation selection rule has 
been noticed by other authors and the results here are 
consistent with the conclusions of Dunn7 for the homo-
nuclear diatomic molecule. 

The quantitative behavior of e(K,8,R) as a function 
of K and 5 is shown in Fig. 2 for the case lsdg—2p<Tu> 

R=2,0. In the limit of small K, e(Ky8,R) approaches 

FIG. 2. The be
havior of e(K,8,R) 
shown as a function 
of 8 for the ls<rg*-2pcru 
(R = 2.0) case and 
several values of K. 
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J G. H. Dunn, Phys. Rev. Letters 8, 62 (1962). 
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TABLE I. Values of | e(KyR) \2/K2 [see Eq. (6)] for the electronic transitions lsag~2pau (R = 1A, 2.0, 3.2), 
\s<Tg-2pTru (i? = 2.0), Iso-g-lso-g (R = 2.0) as a function of K, 

K 
00 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 

ls<Tg-2pau (£ = 2.0) 
(AE = 0.43509) 

0.3676 
0.3666 
0.3641 
0.3539 
0.3378 
0.3166 
0.2915 
0.2638 
0.2349 
0.2058 
0.1777 
0.1512 
0.1270 
0.1053 
0.0863 
0.0700 
0.0562 
0.0447 
0.0353 
0.0277 
0.0215 
0.0166 

0.0098 

ls<Tg-2p(ru (i?=1.4) 
(A£=0.67219) 

0.2296 
0.2291 
0.2277 
0.2221 
0.2130 
0.2011 
0.1869 
0.1711 
0.1543 
0.1373 
0.1205 
0.1045 
0.0896 
0.0760 
0.0639 
0.0532 
0.0439 
0.0360 
0.0293 
0.0237 
0.0191 
0.0153 

| €(*,*) | V P 
\s(Tg~2pau (R = 3.2) 

(AE=0.18102) 

0.7656 
0.7632 
0.7559 
0.7275 
0.6826 
0.6247 
0.5579 
0.4867 
0.4145 
0.3453 
Q.2816 
0.2250 
0.1762 
0.1355 
0.1024 
0.0762 
0.0558 
0.0404 
0.0289 
0.0205 
0.0145 

ls<rg-2piru (R = 2.0) 
(AE=0.67385) 

0.3414 
0.3403 
0.3369 
0.3237 
0.3031 
0.2765 
0.2461 
0.2140 
0.1818 
0.1513 
0.1233 
0.0987 
0.0777 
0.0602 
0.0460 
0.0347 
0.0259 
0.0191 
0.0140 
0.0102 
0.0073 
0.0053 

lsaa-2s<rg (R = 2.0) 
(AE=0.74176) 

0.0 

0.001091 
0.004143 
0.008633 
0.01382 
0.01890 
0.02320 
0.02622 
0.02777 
0.02785 
0.02667 
0.02456 
0.02185 
0.01886 
0.01585 
0.01301 
0.01047 
0.00827 
0.00643 
0.00493 
0.00374 
0.00281 

cosine behavior; hence, the differential cross section 
will have a cosine-squared dependence on 5. As K in
creases, the behavior changes from a cosine curve to 
one quite eccentric, although still possessing cosine 
symmetry. Note that the maximum in e(K,8,R) moves 
away from 5 = 0 and approaches 8=T/2. From the form 
of Eq. (9), when the exponential is expanded in a power 
series, it is possible to say something about the behavior 
of this eccentricity as the internuclear separation is 
altered. As R—>0, e(K,8,R) becomes much less de
pendent on K while, as R is allowed to become large, 
its behavior becomes much more dependent on K and 
quite complex in general. This behavior is observed in 
the case where several internuclear separations are 
studied. These general arguments apply to other tran
sitions but both the symmetry and quantitative 
behavior can be expected to be different. 

These observations about the dependence of e(K$,R) 
are useful when the integration of Eq. (6) is performed. 
e(K,8,R) need be evaluated only over the range 0<8 
<7r/2, as pointed out above. Since this must be done 
numerically, a considerable saving in labor ensues. In 
addition, since the form of the trigonometric behavior 
is well specified, this gives a strong hint as to the 
method of numerical integration that should be used. 
If one evaluates e(K,8,R) at a series of equally spaced 
values of 8 for a given K and then fits these points with 
a trigonometric interpolation formula,8 a simple series 
results which contains only terms like cos (2^+1)5 for 

the \s(Tg-2p(xu case. Similar behavior results for the 
other cases. I t is a simple matter to then square this 
series and carry out the indicated integration. In 
practice, e(K,8,R) was evaluated for increments of 10 
deg in 8; hence, the series consists of nine terms. This 
procedure is exact if the expansion of the exponential 
in Eq. (9) can be truncated to the first nine nonvanish-
ing terms. Obviously, as K and R increase, this expan
sion becomes less valid. However, for the cases studied, 
a sufficient range of K could be covered so that all 
significant contributions to the total cross section were 
obtained. The resulting values of | e(K,R) 12/K2 for the 
various cases are given in Table I. An accurate error 
analysis seems out of the question but it is estimated 
that any error should be confined to the last figure 
quoted. 

One check of the values given in Table I can be made 
through the relationship 

]imf(K,R)-+f(R) 

where 

f(K,R) = 2AE-

(15) 

(16) 

f(R) is the optical oscillator strength and f(K,R) is 
the generalized optical oscillator strength as defined 
by Bethe.9 Values of f(R) for the \suQ-2p<Tu case are 

8 C. Lanczos, Applied Analysis (Prentice Hall, Inc., Englewood 
Cliffs, N. J., 1956), p. 229. 

9 N . F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Oxford University Press, Oxford, 1952), p. 248. 
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available10 and are 0.309 (£=1 .4) , 0.319 (R=2.0), 
0.281 (R=3.2) which are to be compared with 0.3087, 
0.3198, 0.2772, the values of f(R) obtained from Eq. 
(15). The optical oscillator strength for the lsag-2piru 

transition11 is 0.460 which is to be compared to 0.4601. 
Obviously, f(R) vanishes for the forbidden lsag-2sag 

transition, as does the limit of Eq. (15) for this case. 
[Nonvanishing limits were found directly from Eq. (9) 
rather than using Eq. (12).] Agreement is quite good 
for all cases except lso-g-2p<ru (R=3.2) and the value 
obtained here is within the limits of accuracy (3%) 
claimed by Bates.10 

TOTAL CROSS SECTIONS 

The total cross sections Q(R), defined by Eq. (7), 
were found from the values listed in Table I in the 
following way: For small values of K(K<0.4) Table I 
was interpolated graphically to intervals in K of 0.01. 
Then the integrand of Eq. (7) was evaluated for avail
able values of \e(K,R)\2/K2 and the integration was 

V? 0.3 h 

100 200 300 

INCIDENT ENERGY (eV) 

FIG. 3. The total cross section Q(R) for the lsa-g-2piru 
(R = 2.0) case. 

400 

200 300 400 

INCIDENT ENERGY (eV) 

FIG. 4. The total cross section Q(R) for the ls<rg-2s<rg 
(R = 2.0) case. 

relatively small, as expected. The lsag-2p(ru case is 
shown in Fig. 5 for three internuclear separations. The 
curve for R=2.Q corresponds to the equilibrium inter
nuclear separation and is, therefore, an approximation 
to the Born cross section when the effects of the inte
gration in Eq. (8) are ignored. This is, of course, most 
accurate when H 2

+ is in the ^ = 0 vibrational state. The 
other two curves are for internuclear separations that 
correspond roughly to the turning points of the vibra
tional state v=3. I t is apparent that the cross section 
for this case is strongly dependent on internuclear 
distance for intermediate incident energies. In the limit 
of infinite incident energies, these cross sections ap
proach constant ratios of each other; specifically, 
Q(3.2)/Q(2.0) = 2A and Q(2.0)/Q(1.4) = 1.6. The effect 
of this strong dependence of Q(R) on R is investigated 
below where Eq. (8) is evaluated for two different 
vibrational states. 

The curve for lsag-2pau (R=2.0) can be compared 
with the results, ignoring exchange, given by Ivash3 

carried out using Simpson's rule. In general, Table I 
does not contain values of \e(K,R)\2/K2 for K large 
enough to include the upper limit of the integral in 
Eq. (7). However, the contributions to the total cross 
section from this range are quite small and in practice 
this remainder was estimated by fitting the integrand 
with a function depending on K~5. 

The cross section Q(2.0) for the lsag-2pTu case is 
shown in Fig. 3. (The equilibrium internuclear distance 
of H 2

+ is J?e=2.0 ao.) I t is apparent that this transition 
contributes quite heavily to scattering by H 2

+ and 
must be taken into account when considering processes 
where this final state is possible. The lscrg-2s<Tg, R=2.0 
case is shown in Fig. 4. This corresponds to an optically 
forbidden transition and the total cross section is 

10 D. R. Bates, J. Chem. Phys. 19, 1122 (1951). 
11 D. R. Bates, R. T. S. Darling, S. C. Hawe, and A. L. Stewart, 

Proc. Phys. Soc. (London) A66, 1124 (1953). 

100 200 300 400 

INCIDENT ENERGY (eV) 

FIG. 5. The total cross section Q(R) for the ls<rg-2pau (R = 14 
2.0, 3.2) case. The dashed line is from a calculation by Ivash 
(Refs. 3, 12). 
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which are shown as the dashed curve12 in Fig. 5. To 
obtain this curve, he used wave functions of the form 
s&=ua-{-Ub, where u is a Is screened hydrogen wave 
function. His results are uniformly above the present 
calculation of Q(2.0) by 20% or more in this energy 
range and in the high-energy limit will be greater by 
17%. The difference between the two calculations is 
not large but the present treatment has the advantage 
that all aspects of the derivation of the first Born 
approximation remain valid as a result of using the 
exact H2

+ wave functions. A direct comparison with 
Kerner's calculation does not seem justified since he 
treats a specific rotational and vibrational excitation 
in conjunction with the lsag-2pau electronic transition. 
However, it is interesting to note that his cross section 
is roughly an order of magnitude less than ()(2.0). 

To study the effect of vibration on the total cross 
section, it is necessary to evaluate Eq. (8). If a diatomic 
molecule is in its lowest vibrational state (v=0) and 
it is assumed that Q(R) varies slowly with R, it is a 
good approximation2 to replace Qo with Q(Re), since 
|X0(XH2 will be strongly peaked at the equilibrium 
internuclear distance Re. For the transition under 
consideration, Q{R) is seen to be rather strongly de
pendent on R, so it appears that Qo must be evaluated 
without using the above approximation. In addition, 
it is known that H2+ is often observed in excited vibra
tional states which have a rather long lifetime. Hence, 
Qv will be evaluated using Eq. (8) for the vibrational 
state v = 3. This state is chosen because it is a highly 
probable vibrational state for H2+ if this ion results 
from the ionization of H2 in its ground electronic and 
vibrational state. 

The integral defined by Eq. (8) was estimated in the 
following way: Q(R) for a given incident energy was 
fit by a polynomial in R. Since Q(R) is known for only 
three points this polynomial was necessarily a quadratic. 
Then, using the vibrational functions given by Cohen, 
Hiskes, and Riddell,13 Qv was evaluated by Simpson's 
rule. 

The results for Qo, Qz are shown in Table I I along 

TABLE II . The total cross sections Q(R) and Qv (in units of 
7rao2) for the lsa-g-2pau transition tabulated as a function of the 
incident energy. 

£(eV) 

50 
100 
200 
300 
400 

0(1.4) 

0.426 
0.304 
0.197 
0.148 
0.120 

0(2.0) 

0.977 
0.635 
0.396 
0.295 
0.230 

0(3.2) 

3.25 
1.92 
1.11 
0.795 
0.612 

Qo 

1.09 
0.698 
0.431 
0.320 
0.248 

03 

1.92 
1.17 
0.691 
0.502 
0.383 

12Ivash's calculation has been extended to include the energy 
range of interest in this investigation. 

13 S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr., University of 
California Radiation Laboratory Report No. UCRL-8871, 1959 
(unpublished); S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr., 
Phys. Rev. 119, 1025 (1960). 

with (2(1.4), (2(2.0), 6(3.2). I t is interesting to note 
that <2o is about 10% higher than (2(2.0) and that Qz 

is almost 70% higher at 400 eV with the deviation 
increasing as the incident energy decreases. Hence, to 
predict the inelastic electron scattering into the 2pau 

state, it is necessary to know precisely what vibrational 
levels are populated, and to what degree. I t does not 
follow that scattering into other final electronic states 
will show such marked dependence on v, but points 
out the necessity for caution before neglecting the 
initial vibrational state. Relationships equivalent to 
Eq. (8) can easily be derived for the differential cross 
section and the generalized oscillator strength. The 
effects of v on the differential and total cross sections 
can be expected to be quite similar. However, using 
the information in Table I, it can be seen that f(K,R) 
has a maximum near Re for the lsag-2pau case; hence, 
the generalized oscillator strength will be much less 
dependent on v. 
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APPENDIX 

Substituting Eq. (11) into Eq. (9), integrals of the 
type 

hm=\ / / f(\) exp{(iKR/2) 
J I J _i J o 

X [ > C O S 5 + ( X 2 - 1 ) 1 / 2 ( 1 - M ) 1 / 2 sin<£ sin5] 

- imcj>} Pk+m
m {ix)d<j>dixd\ ( A l ) 

are obtained. Utilizing the integral14 

/»27T+o; 

/ e'<"+-*»lll«<fy=2TJr„(Z), (A2) 
J a 

where Jn is a Bessel function of the first kind, 

IiT=2w I /(X) exp{i(KR/2)Xfi cos5)} 

X / w [ K ^ ( X 2 - l ) 1 / 2 ( l - / x 2 ) 1 / 2 sin5] 

XPk+mm(fJL)dixd\ (A3) 

is found. Gegenbauer's finite integral15 can be rewritten 
14 G. N. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge University Press, Cambridge, 1958), p. 20. 
15 Ref. 14, p. 378. 
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in the form and it follows that 

/ exp(fy/A cos^) JmQy (1 - M2)1/2 sin^P^^G-O^M 

= 2ikPk+m
m(co^)jk+m(y), (A4) 

where jn{oo) is a spherical Bessel function defined by 

)=(7r/2xy/Vn+i/2(x). (AS) 
Let 

y= (KR/2) (X2-sin25)1/2 (A6) 

cos^=X cos5/(X2-sin25)1/2; (A7) 
then 

sin^= (X2-1)1/2 sin5/[X2~sin26]1/2. (A8) 

Substituting Eqs. (A6)~(A8) into Eq. (A4), we find an 
integral of the same form that appears in Eq. (A3), 

INTRODUCTION 

THE transition between states with different multi
plicity is a very weak one. The corresponding 

emission line of some ions were first found in the spectra 
of some nebulas1 and the theory has been given by 
Condon and other people.2 This type of transition has 
been investigated for many ions since then, a brief 
review can be found in Garstang's article.3 In all these 
theories the mixing of different multiplicity states 
through the spin-orbit interaction was assumed to be 
important. The 1D2 state of O III, for example, has 

* Supported by National Science Foundation. 
1 1 . S. Bowen, Astrophys. J. 67, 1 (1928). 
2 See C. U. Condon and G. H. Shortley, The Theory of Atomic 

Spectra (Cambridge University Press, New York, 1935), pp. 282-
283. 

3 R. H. Garstang, Atomic and Molecular Processes, edited by 
D. R. Bates (Academic Press Inc., New York, 1962), Part 1. 

Ikm=4ari* [ /(X)ijH-«(y)-PiM.»m(cos^)dX. (A9) 

Using these results, Eqs. (12)—(14) are easily verified. 
Assuming that Eq. (A9) cannot be evaluated analyti

cally, the following numerical scheme was used for this 
purpose. A program for a digital computer, the Control 
Data Corporation's 1604, was written which carried 
out the integration of Eq. (A9) for a given choice of 
K, 5, R by means of Weddle's quadrature formula. 
With these values it is then possible to evaluate Eq. 
(12). The sum in Eq. (12) was usually truncated to 
three terms, although four terms were used in some 
cases. The same program was used to evaluate e(K,8,R) 
and carry out the integration of Eq. (6). 

0.0074 of ZP% wave function mixed through the spin-
orbit interaction, and the transition to a triplet state can 
occur through this small part of the wave function. 
Most of the phosphorescences of molecules are inter
preted as due to the singlet-triplet transition.4 McClure 
first suggested the transition through the spin-orbit 
interaction for these molecules.5 The present author and 
Koide formed a theory starting with the Dirac equation 
of electron and calculated the singlet-triplet transition 
probability of the benzene molecule.6 The result with 
some approximation gave about 1 sec for the lifetime of 
the lowest zB2u state of this molecule. Hameka and 
Oosterhoff7 refined the calculation and showed the 
lifetime of the same state to be 190 sec. Calculations for 

4 M. Kascha, Chem. Rev. 41, 401 (1947). 
5 D. C. McClure, J. Chem. Phys. 17, 665 (1949). 
6 M . Mizushima and S. Koide, J. Chem. Phys. 20, 765 (1952). 
7 H. F. Hameka and L. J. Oosterhoff, Mol. Phys. 1, 358 (1958). 
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A S = ± 1 Magnetic Multipole Radiative Transitions* 
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The magnetic multipole transition probability is calculated in terms of the matrix elements of the mag
netic multipole. The magnetic jm moment ftOT

(wfl) is denned as 

(e/M)[4x/(2/+l)]1/2 2 ( v ^ T y ^ C y + i r ^ + S i l 

where e and n are electron charge and electron mass, n, h, and s; are the coordinate, orbital angular momen
tum, and spin-angular momentum of the ith electron and Yjm is the spherical harmonic. Magnetic quadrupole 
and octupole moments are explicitly given. I t is shown that for the 3S«+ <-> 1S0

+ transition of the hydrogen 
molecule, the magnetic quadrupole transition is more important than the conventional spin-orbit electric 
dipole transition. The magnetic octupole transition has the same order of magnitude as the spin-orbit mag
netic dipole transition. 


